UNIFLEX Advanced series

Light, quiet all-rounder with a wide range of applications*

UA1665 | Stay Variants | Overview

UA1665

Stay variants

Design 020

Closed frame

 Weight-optimized, closed plastic frame with particularly high torsional rigidity.

Opening options

inside/outside: Cannot be opened.

Design 030

Frame with externally detachable crossbars

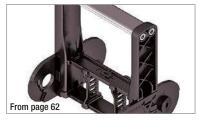
- Weight-optimized plastic frame with particularly high torsional rigidity.
- Swivable and detachable on both sides in any position.

Opening options

outside: Swivable and detachable.

Design 040

Frame with internally detachable crossbars


- Weight-optimized plastic frame with particularly high torsional rigidity.
- Swivable and detachable on both sides in any position.

Opening options

inside: Swivable and detachable.

Design RMA

Mounting frame stay

- Weight-optimized plastic frame with particularly high torsional rigidity.
- Plastic crossbars and aluminum profile bars with plastic mounting frame stays for guiding very large cable diameters.

Opening options

outside or inside: Screw connection of the aluminum profile bars is easy to release.

Bending radius 75 – 300 mm

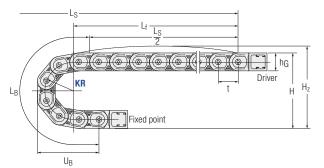
Inner widths

50 250

Key for abbreviations on page 72

kabelschlepp.de/assembly Assembly instructions on

Order key on page 70



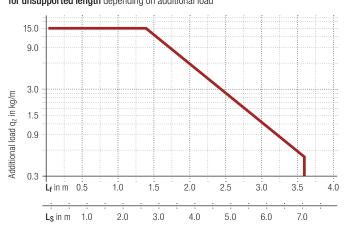
kabelschlepp.de/ uniflex-advanced

UA1665 | Installation Dimensions | Unsupported

Unsupported arrangement

Unsupported length L_f

A sagging of the cable carrier is technically permitted for extended travel lengths, depending on the specific application.


Dynamics of unsupp	t			
v _{max} [m/s]	$\mathbf{v}_{max} [m/s]$ $\mathbf{a}_{max} [m/s^2]$			
8	40	66.5		

Installation dimensions unsupported

KR [mm]	H [mm]	H _z [mm]	L _B [mm]	U_B [mm]
75	210	245	369	172
100	260	295	448	197
120	300	335	511	217
140	340	375	574	237
200	460	495	762	297
250	560	595	919	347
300	660	695	1,076	397

Load diagram

for unsupported length depending on additional load

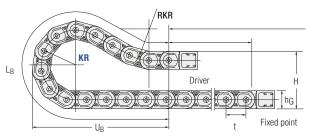
Calculating the cable carrier length

Cable carrier length L_k

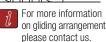
$$L_k \approx \frac{L_S}{2} + L_B$$

Cable carrier length L_k rounded to pitch t

Unsupported length Lf


$$L_f = \frac{L_S}{2} + 1$$

Fixed point offset L_v:


For off-center fixed point connections please contact us.

Intrinsic cable carrier weight $q_k = 2.43$ kg/m with B_i 200 mm. For other inner widths the maximum additional load changes.

Gliding arrangement

Inner heights

Inner widths

Only designs 020, 030 and RMA may be used for gliding arrangements.

Dynamics of glid	t	
v _{max} [m/s]	a_{max} [m/s ²]	[mm]
3	15	66.5

Installation dimensions gliding with RKR links

KR [mm]	H [mm]	n _{RKR}	L _B [mm]	U_B [mm]
75	180	2	694	333
100	180	2	881	405
120	180	3	1,038	464
140	180	3	1,197	523
200	180	4	1,684	701
250	180	6	2,094	850
300	180	7	2,506	1,000

Connection height H is standard. Please contact us if you require other connection heights H. We will be happy to advise you. Optionally, the OnlineEngineer is always available for the calculation.

The gliding cable carrier has to be routed in a channel.

Our engineers will be happy to help with project planning – please contact us.

Calculating the cable carrier length

Cable carrier length Lk

$$L_k \approx \frac{L_S}{2} + L_B$$

Cable carrier length Lk rounded to pitch t

Fixed point offset L_v:

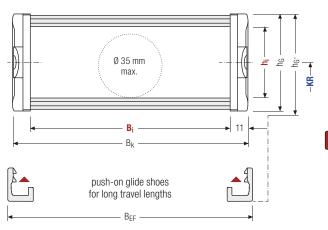
For off-center fixed point connections please contact us.

uniflex-advanced kabelschlepp.de/

UA1665.020 | Overview

Stay variant 020 - closed frame

- Weight-optimized, closed plastic frame with particularly high torsional rigidity.
- Opening options outside/inside: Cannot be opened.

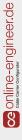


technik@kabelschlepp.de Technical support:

Calculating the cable carrier width

Outer width Bk

 $B_k = B_i + 22 \text{ mm}$


Total width BFF

 $B_{EF} = B_i + 27 \text{ mm}$

The maximum cable diameter strongly depends on the bending radius and the desired cable type. Please contact us.

Replaceable glide shoes

Subject to change.

UA1665.020 | Dimensions · Technical Data

Pitch, inner height and chain link height

t	h _i	h_G	h_{G'}
[mm]	[mm]	[mm]	[mm]
66.5	44	60	63

Bend radii

KR [mm]										
75		100		120	140	200		250		300

Inner/outer width and intrinsic cable carrier weight

B _i [mm]	B _k [mm]	B _{EF} [mm]	q_k [kg/m]
50	72	77	1.67
75	97	102	1.82
100	122	127	1.95
125	147	152	2.09
150	172	177	2.22
175	197	202	2.36
200	222	227	2.49
225	247	252	2.63
250	272	277	2.76

Order example

	UA1665	. 020	. 125	. 140 -	2,660
00	Туре	Stay variant	B _i [mm]	KR [mm]	L _K [mm]

250

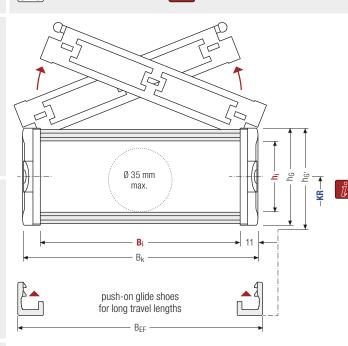
kabelschlepp.de/

UA1665.030 Overview

Stay variant 030 – with outside opening and detachable crossbars

- Weight-optimized plastic frame with particularly high torsional rigidity. Swivable and detachable on one side in any position.
- Opening options outside: Swivable and detachable.

Configure your cable carrier: onlineengineer.de


Stay arrangement on every chain link (VS)

 B_i from 50 – 250 mm

technik@kabelschlepp.de Technical support:

online-engineer.de

Calculating the cable carrier width

Outer width Bk

 $B_k = B_i + 22 \text{ mm}$

Total width BFF

 $B_{EF} = B_i + 27 \text{ mm}$

The maximum cable diameter strongly depends on the bending radius and the desired cable type. Please contact us.

Replaceable glide shoes

Subject to change.

UA1665.030 | Dimensions · Technical Data

Pitch, inner height and chain link height

t	h _i	h_G	h g [,]
[mm]	[mm]	[mm]	[mm]
66.5	44	60	63

Bend radii

KR [mm]										
75		100		120	140	200		250		300

Inner/outer width and intrinsic cable carrier weight

B_i [mm]	B_k [mm]	B EF [mm]	q_k [kg/m]
50	72	77	1.67
75	97	102	1.80
100	122	127	1.92
125	147	152	2.06
150	172	177	2.18
175	197	202	2.31
200	222	227	2.43
225	247	252	2.57
250	272	277	2.70

Order example

	UA1665	. 030	. 125	. 140 -	2,660
00	Type	Stay variant	B _i [mm]	KR [mm]	L _K [mm]

250

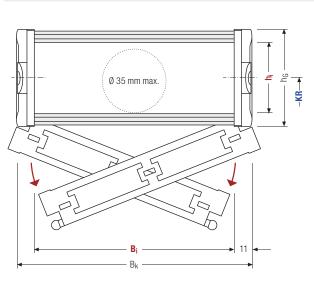
kabelschlepp.de/ uniflex-advanced

Configure your cable carrier: onlineengineer.de

UA1665.040 | Overview

Stay variant 040 – with inside opening and detachable crossbars

- Weight-optimized plastic frame with particularly high torsional rigidity.
- Swivable and detachable on one side in any position.
- Opening options inside: Swivable and detachable.



Stay arrangement on every chain link (VS)

technik@kabelschlepp.de Technical support:

online-engineer.de

Calculating the cable carrier width

Outer width Bk

 $B_k = B_i + 22 \text{ mm}$

The maximum cable diameter strongly depends on the bending radius and the desired cable type. Please contact us.

Design 040 is not suitable for gliding arrangement.

UNIFLEX

UA1665.040 | Dimensions · Technical Data

Pitch, inner height and chain link height

t	h _i	h _G
[mm]	[mm]	[mm]
66.5	44	60

Bend radii

			KR [mm]			
75	100	120	140	200	250	300

Inner/outer width and intrinsic cable carrier weight

B _i [mm]	B_k [mm]	q k [kg/m]
50	72	1.67
75	97	1.80
100	122	1.92
125	147	2.06
150	172	2.18
175	197	2.31
200	222	2.43
225	247	2.57
250	272	2.70

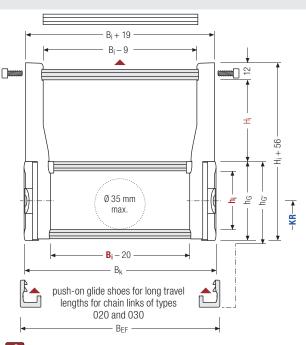
Order example

	UA1665 .	040 .	125	. 140 -	2,660
00	Type	Stay variant	B _i [mm]	KR [mm]	L _K [mm]

kabelschlepp.de/ uniflex-advanced

Stay variant RMA - mounting frame stay

- Weight-optimized plastic frame with particularly high torsional rigidity.
- Plastic crossbars and aluminum profile bars with plastic mounting frame stays for guiding very large cable diameters.
- Opening options outside or inside: Screw connection of the aluminum profile bars is easy to release.



Configure your cable carrier: onlineengineer.de

Stay arrangement on every chain link (VS) B_i from 125 - 200 mm

Calculating the cable carrier width

Outer width B_k

 $B_k = B_i + 22 \text{ mm}$

Total width BFF

 $B_{EF} = B_i + 27 \text{ mm}$

The maximum cable diameter strongly depends on the bending radius and the desired cable type. Please contact us.

Design 040 is not suitable for gliding arrangement.

online-engineer.de

Inner heights

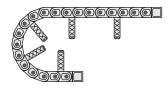
Inner widths 125 200

Pitch, inner height and chain link height

t	h i	h_G	h g [,]
[mm]	[mm]	[mm]	[mm]
66.5	44	60	63

UA1665.RMA | Dimensions · Technical Data

Bend radii

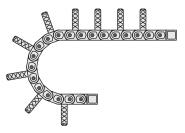

			KR [mm]			
75	100	120	140	200	250	300

Inner/outer width and intrinsic cable carrier weight

B _i [mm]	B _k [mm]	B _{EF} [mm]	Locking bar [mm]	H _i [mm]	q_k (RVAI) * [kg/m]	q_k (RVA0) * [kg/m]
125	147	152	100	114	3.10	3.58
150	172	177	125	139	3.38	3.94
175	197	202	150	164	3.67	4.30
200	222	227	???	189	3.95	4.66

^{*} indicated according to standard pitch

Assembly variants


RVAI - assembly to the inside:

standard pitch, mounting frame stay on every 4th stay, no screw fixing.

Gliding application is not possible when using assembly version RVAI.

Observe minimum KR:

 $H_i = 114 \text{ mm}$: $KR_{min} = 200 \text{ mm}$ $H_i = 139 \text{ mm}$: $KR_{min} = 250 \text{ mm}$ $H_i = 164 \text{ mm}$: $KR_{min} = 300 \text{ mm}$ $H_i = 189 \text{ mm}$: $KR_{min} = 300 \text{ mm}$

RVAO - assembly to the outside:

standard pitch, mounting frame stay on every 2nd stay, no screw fixing.

The cable carrier has to rest on the side bands and not on the stavs.

Guiding in a channel is required for support. Please contact our technical support at technik@kabelschlepp.de to find the corresponding guide channel.

Please note the operating and installation height.

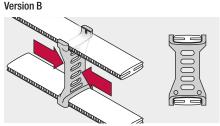
64

UA1665 | Inner Distribution | TS0

Divider systems

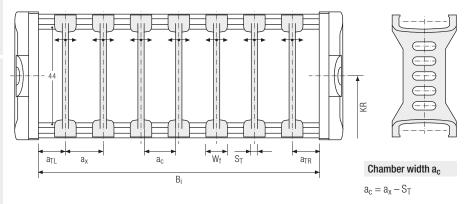
As standard, the divider system is assembled at every 2nd chain link.

As standard, dividers and the complete divider system (dividers with height separations) can be moved in the cross section (version A).


The dividers are easily attached to the stay for applications with transverse acceleration and for laterally recumbent applications by simply turning them. The locking cams click into place in the locking grids in the crossbars (version B).

Movable divider

Version A (Standard)

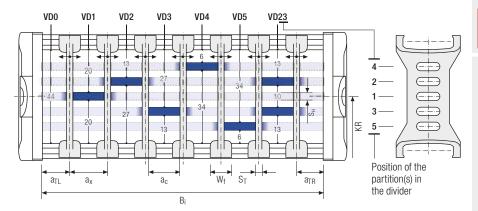

Fixable divider (2.5 mm grid)

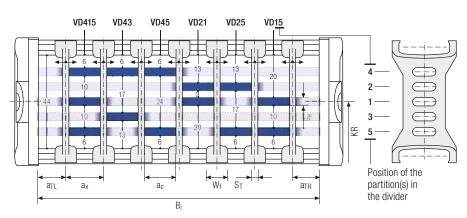
Divider system TS0 without height separation

	Version	ı A	Version B**						
S _T W _f n _{T max} [mm] [mm] design 020		min a _{c min} and	rL/a _{TR min} a _{x min} [mm]	$a_{c min}$ $a_{x grid}$ [mm]					
3 10 †	5 1	10 7	5 10	7 2.5					
B _i [mm]	50 75 10	00 125 150) 175 200	225 250					
• n _{T max} design 020	0 4 6	3 9 11	14 16	19 21					

^{**} not design 020

UA1665 | Inner Distribution | TS1


Divider system TS1 with continuous height separation*


S _T	W _f	S _H [mm]	n _{T min}	a _{T max} [mm]
3	10	4	2	20

Version A							
a _{T min}	a _{x min}	a _{c min}					
[mm]	[mm]	[mm]					
5	10	10					

Version B									
a _{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	a _{x grid} [mm]						
5	10	7	2.5						

^{*} not design 020

 $\mathring{\vec{\textit{ll}}}$ Standard height separation with aluminum profile 11 × 4 mm.

Chamber width ac

$$a_c = a_x - S_T$$

kabelschlepp.de/ uniflex-advanced

Configure your cable carrier: onlineengineer.de

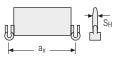
technik@kabelschlepp.de Technical support:

Divider system TS3 with height separation made of plastic section subdivisions*

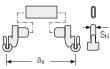
Version A S_T W_f S_H atl/atr min a_{x min} a_{c min} n_{T min} [mm] [mm] [mm] [mm] [mm] [mm] 10 16/40** 8 2

* not design 020 ** For aluminum section subdivisions VD0 VD3 H Position of the a_{TL} ST partition(s) in a_{TR} ax Twin dividers the divider

The dividers are fixed by the partitions, the complete divider system is movable in the cross section. Movable twin dividers are optionally available. Twin dividers are also suitable for retrofitting in the section subdivision system.

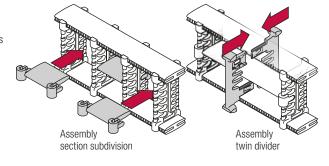

Bi

Chamber width ac


$a_c = a_x - S_T$

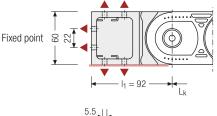
	a _x (center distance of dividers) [mm]													
a _c (nominal width of inner chamber) [mm]														
16	18	23	28	32	33	38	43	48	58	64	68	78	80	88
8	10	15	20	24	25	30	35	40	50	56	60	70	72	80
96	112	128	144	160	176	192	208							
88	104	120	136	152	168	184	200							

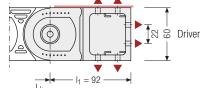
Plastic section subdivisions in ax increments

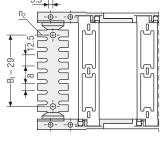


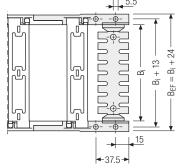
Aluminum section subdivisions with plastic adapters in 1 mm increments

When using section subdivisions with $a_x > 112 \text{ mm}$ we recommend an additional center support with a twin divider.

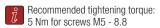

When using twin dividers, the height separations VD4 and VD5 are not possible. Aluminum section subdivisions are only available with $a_x > 40 \text{ mm}$

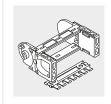



UA1665 | End Connectors | UMB

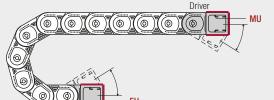

Universal end connectors UMB – plastic (standard)

The universal mounting brackets (UMB) are made from plastic and can be mounted from the top, from the bottom, or face on.





▲ Assembly options


B _i [mm]	B _{EF} [mm]	n _z
50	74	2 x 3
75	99	2 x 5
100	124	2 x 7
125	149	2 x 9
150	174	2 x 11
175	199	2 x 13

The end connectors are optionally also available without strain relief comb or with C-rail (1 per side) for clamps. Please state when orderina.

Connection variants

Connection point

F – fixed point

M – driver

Connection type

U – universal mounting bracket

Order example

UMB	F U
UMB	M U

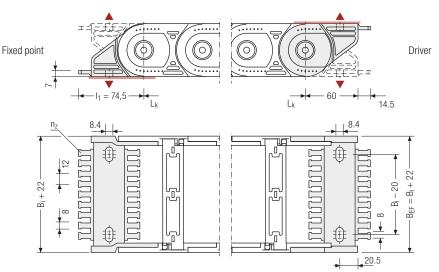
Inner heights

Inner widths

Key for abbreviations

kabelschlepp.de/assembly Assembly instructions on

Order key


Subject to change.

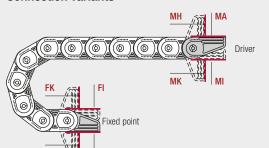
The universal end connectors UMB can be swiveled in KR direction.

UA1665 | End Connectors | End Connectors

One part end connectors - plastic

The plastic end connectors can be **connected from above and below**. The connection type can be changed by reconnecting the end connector.

▲ Assembly options


B i [mm]	B _{EF} [mm]	n _z	
50	72	2 x 4	
75	97	2 x 6	
100	122	2 x 8	
125	147	2 x 10	
150	172	2 x 12	
175	197	2 x 14	
200	222	2 x 16	
225	247	2 x 18	
250	272	2 x 20	

Recommended tightening torque: 15 Nm for screws M8 - 8.8

The end connectors are also available as an option **without** strain relief comb.
Please state when ordering.

Connection variants

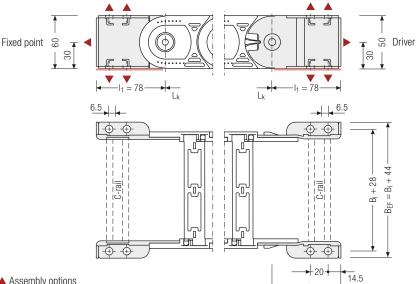
Connection point

F – fixed point

M - driver

Connection type

A – threaded joint outside (standard)


I – threaded joint inside

H - threaded joint outside rotated by 90°

K – threaded joint inside rotated by 90°

Universal end connectors UMB-St - steel

The universal mounting brackets (UMB) are made from steel and can be mounted from the top, from the bottom or face on.

Assembly options

B i [mm]	B EF [mm]
50	94
75	119
100	144
125	169
150	194
175	219
200	244
225	269
250	294

The end connectors are also available as an option with C-rail for clamps.

Please state when ordering.


Order example

00	

UMB-St .	F U
UMB-St .	M U

Connection variants

Fixed point

Connection point

F – fixed point

M – driver

Connection type

U – universal mounting bracket

Note: The end connectors UMB-St offer the same connection dimensions as the previous universal end connectors UMB from UNIFLEX 0665.

Inner widths

Key for abbreviations

kabelschlepp.de/assembly Assembly instructions on

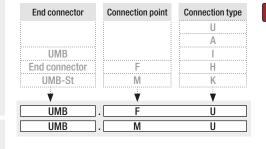

Order key

UA1665 | Order Key

Order

Cable carrier

International order specification INTOK: Information about the International Order Key can be found in the chapter "International Order Key" from page 1.


Divider system

Divider system	Version	n _T	Chamber	a _x [mm]	Height separation (not for TS0)
TS0			K1		VD0
TS1	Α	min. 2	K2	min. 7.0	VD1
TS3	В				
		_	.		!
TS3	. A	3.	K1	. 34 -	VD1
			:	:	:
Divider system	Version	n _T	K5 Chamber	. 38 -	VD3 Height separation

Please state the designation of the divider system (TS0, TS1 ...), version and number of dividers per cross section [n_T]. Additionally, please enter the chambers [K] from left to right (driver view).

If using divider systems with height separation (TS1 and TS3), please also state the positions [e.g. VD23] as viewed from the driver. If using the divider system TS3, please also state the required twin dividers. You are welcome to add a sketch to your order.

Connection variant

Please state the desired connection variant as well as the desired strain relief type for the fixed point and for the driver.

UA1665 | Accessories

Accessories

Single-sided strain relief combs

The optional plastic strain relief combs are assembled between the UMB end connectors and require no separate screw fixing.

Inner heights

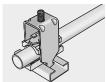
Inner

widths

250

C-rails for strain relief elements

The optional C-rails are secured by the UMB end connectors and do not require separate screw connections.



LineFix® clamps

LineFix® clamps are fixed to the C-rail. The serve as a separate strain relief or separate attachment of the cables outside the cable carrier.

Key for abbreviations

Gliding elements

The optional glide shoes ensure a substantially longer service life of the cable carrier in gliding operation.

kabelschlepp.de/assembly Assembly instructions on

Quick opening tool

Opening tools can be used to open cable carriers quickly and gently for installation and inspection of cables and hoses.

Order key

Guide channels

The cable carrier always has to be guided in a channel for gliding applications. This prevents the upper and lower run from slipping.

